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Abstract

Stormwater models, such as StormTac, are very useful in stormwater planning and

management. However, although baseflow makes an important contribution to

pollutant load, which in turn is dependent upon inputs from various types of land

use, the parameters for baseflow and these input in models, such as StormTac, are

typically only default values based on a limited number of case studies. In this work,

the baseflow module in the stormwater and recipient model StormTac has been

revised following review of a more extensive number of case studies. Further work

is still required to look at all of the default values to improve the certainty of the

StormTac model in particular, and stormwater models in general.
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1. Introduction and background

Stormwater is rainwater or melted snow that either becomes surface runoff on
paved surfaces or infiltrates into the ground (Rikstermbanken 2011): it eventually
flows into stormwater ditches or stormwater pipes. The water present in
stormwater ditches and stormwater pipes before and after a stormwater peak in

the flow is termed the baseflow.

Stormwater transports many pollutants, such as heavy metals, hydrocarbons,
nutrients and pathogens (Elliot and Townsdale 2007). To be able to design
treatment facilities and/or take management decisions to meet legislative
requirements, predictive stormwater models can be very useful. It is also very
important that baseflow is included in stormwater models, because its contribution
of pollutants can be substantial: if it is not included there is an important part of the

urban hydrological cycle excluded and model outputs may be inaccurate.

There are many stormwater models in use today. This work will focus on the model
StormTac (Larm 2005) that is used for management of lake catchments and
conceptual design of stormwater treatment facilities. StormTac contains a baseflow
module which needs revision as its default values are based on only a few cases

studies. This work will focus on revision of the baseflow module of StormTac.
1.1 Pollution

Stormwater is considered to be the main source of pollutants to lakes and
watercourses in, or close to, cities (Alm et al. 2010). It is well documented that
pollution transported with stormwater may cause a lot of damage to the recipients
(Robson et al. 2007), and stormwater is the second largest contributor of
phosphorus and nitrogen to surface waters, after agriculture (King et al. 2007).
Stormwater transports different kinds of contaminants, both from point sources
and diffuse sources, and from dry and wet deposition on the surfaces of a city or
land surfaces (Alm et al. 2010). There is a range of pollutants present in stormwater,

such as heavy metals, PAHs, PCBs, oil, nutrients and bacteria, originating from many



different sources such as traffic, buildings and human activities, e.g. car washing

(Stockholms stad 2005).

As humans have altered the land surface for different purposes through history,
many transport- and physicochemical processes have been impacted, and this has
increased the quantity of pollutants. As patterns of flows have changed, the types

of pollutants have also changed (Zoppou 1999).

Different land uses result in different compositions and concentrations of
contaminants in stormwater, for example stormwater from a road contains higher
concentrations of polyaromatic hydrocarbons (PAHs) than stormwater from a

residential area (Junestedt et al. 2007).

Some important sources of contaminants found in stormwater are buildings and
traffic. For buildings the main problem is copper- and zinc roofs, and traffic is the
source of rundown surface material (for example asphalt), sand and particles from

vehicles (Stockholms stad 2005).

Most substances are adsorbed on to small particles and are so transported with the
stormwater (Stockholm stad 2005). When there is a rainfall event, particles on the
land surface will be set in motion, and pollutants adhering to the particles and
soluble pollutants will be carried by the runoff to a recipient (Zoppou 1999). This
diffuse pollution increases due to human activities. What activity that takes place
on the land affects the volume of the stormwater, and its composition and
concentration of pollutants (Zoppou 1999). Further, the time between precipitation
events and its intensity and duration also affect the transport of pollutants. Other
sources of pollutants are what Zoppou (1999) calls “failures in the urban
infrastructure”, such as leachate from landfills and contamination from sewer
infiltration. Due to this diversity in sources and types of pollutants, stormwater

management is very complicated (Zoppou 1999).

The contaminants that are present in stormwater can cause harm to humans, plants
and animals, and lead to both technical and aesthetic problems. If they appear in

high concentration or with high frequency, they can be toxic or highly toxic to

10



humans and have negative biological effects on aquatic animals and plants (Alm et
al. 2010). The biological effects range from infection of organisms by bacteria and
viruses and death from chronic toxicity exposure to alteration of natural habitat
cycles and breeding (Zoppou 1999). In addition, if the water gets polluted and the
quality degraded, it might not be fit for purposes such as drinking water, irrigation
water or recreation (Zoppou 1999). Table 1 summarizes the sources and effects of

pollutants in stormwater.

11



Table 1. Sources and effects of metals and substances that pollute stormwater, adapted from
Stockholm Stad (2005) and Zoppou (1999).

Metal/Substance Effect on animals, humans and water Main sources to distribution and
pollution of stormwater

Mercury Highly toxic to humans, organisms and | Goods containing mercury, e.g.
aquatic plants. Can cause brain, nerve amalgams and electrical
and kidney damage. equipment. Diffuse distribution

during waste handling.

Cadmium Very toxic to humans and animals, can | Industrial production e.g. plastic
lead to chronic kidney and liver disease | stabilisers, electroplating and

discarded batteries. Vehicles and
as a pollution in zinc.

Lead Very toxic to humans and animals. Can | Combustion of oil and petrol
cause nerve and brain damage in chimneys, vehicles, industrial
infants, kidney damage and blood waster discharge and
disorders in adults. infrastructure.

Zinc Depending on water pH and hardness Buildings, vehicles and
and synergistic interaction with other infrastructure.
heavy metals, it can be toxic to water-
living animals and plants.

Copper Highly toxic to most aquatic animals Buildings (especially roofs),
and plants. May lead to liver and vehicles, steel production and
kidney damage. sewage treatment plant wastes.

Chromium Negative impact on humans, animals Vehicles, buildings, waste
and plants, generally low toxicity but incineration, electroplating and
can cause liver, kidney and lung septic systems.
damage.

PAHs Carcinogen and toxic to humans. Wood burning. Traffic emissions

and tires.

PCBs Toxic to humans and animals. Sealants in buildings. Electric
capacitor, cables and
transformers.

oil Harmful to humans and animals. Toxic | Oil spills, traffic, leakage form

to animals.

vehicles and tanks, and traffic
accidents.

Nutrients (nitrogen

Eutrophication of lakes and oceans

Combined overflow sewage,

& phosphorus) leads to algal blooms that result in animal droppings and manure.
oxygen deficit. Nitrogen comes mainly from
atmospheric deposition.
Bacteria This is a problem where people go Combined overflow sewage and

swimming, can lead to salmonella
infection, dysentery and cholera.

animal spilling.
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1.2 Stormwater models

Predictive models are very useful for planners and engineers to estimate the
pollution load for unmonitored watersheds. The behaviour of environmental
systems may be predicted quantitatively through modelling, and computer models
of urban stormwater flow and quality have been shown to be very useful in
assessing the most effective management strategy and the best way to ensure

legislative compliance (Zoppou 1999; Brezonik and Stadelmann 2002).

According to Zoppou (1999) there are hundreds of urban stormwater models
developed by different institutions, with the first ones that could simulate
stormwater quality and quantity written in the early 1970s. Since then many
models have been developed: there is everything from very simple to more

conceptual and more complex hydraulic models.

There are three basic components of urban stormwater models (Zoppou 1999):

e precipitation
e rainfall-runoff modelling

e transport modelling

The rainfall-runoff modelling simulates both how excess precipitation causes
surface runoff and sub-surface flow and how pollutants from impervious surfaces
get built-up and washed off. The transport modelling shows how pollutants and
flow travels through the stormwater infrastructure, for example pipe networks,

ditches and storage volumes.

Due to the nature of stormwater, that it is very dynamic and heterogeneous,
reliable measured data are lacking (Junestedt et al. 2007). Thus, to be able to
describe the relative contribution from different land uses, land use-specific
characteristic values are often used for a number of typical pollutants. Those
characteristic values are then used in models to show different land uses’

stormwater composition (Junestedt et al. 2007).

13



Further, there is the runoff coefficient, which describes the proportion of the
precipitation that becomes surface runoff (the other part infiltrates, gets stuck in
the pores of the surface, or evaporates from it). The runoff coefficient is given a
value between 0 and 1, where 1 means that all of the precipitation turns into
surface runoff (Junestedt et al. 2007). An impervious surface has a higher runoff

coefficient than a pervious one.

It is important to be very careful in the analysis of pollutant concentrations in
stormwater as it depends on at what point during a rain event that a sample has
been taken, and what kind of rain it was. Therefore it is appropriate to calculate the
pollution concentrations on a yearly basis, by using average values multiplied with
stormwater volumes that have been measured or calculated locally (Nilsson and
Malmquist 1996). Further, the used concentrations should be based on flow
proportional sampling during long periods of time, i.e. instantaneous grab sampling

should not be used as a basis to characterize stormwater (Larm pers. comm. 2011).

There are both negative and positive aspects of using land use-specific
characteristic values. According to Junestedt et al. (2007) it is debatable whether
characteristic values can describe the stormwater connected to a certain land use.
There are many factors that can affect the composition of a certain sample. The
intensity of the precipitation can affect the amount of pollutants that are washed
off the ground, and the activity that has taken place on the land during the dry
periods will also affect the sample. Junestedt et al. (2007) concludes that those
uncertainties together with many others, such as local conditions, implies the need
for real measured data to describe the actual situation for a specific area. On the
other hand Larm (2005) claims that land use-specific characteristic values are more
relevant to apply than those of single samples during shorter periods, as there is a
risk that they might not be representative for the system in question i.e. flow
proportional sampling is needed but this can be very expensive. Further, Brezonik
and Stadelmann (2002) argue that because it is very expensive to get monitoring
data on diffuse source pollution, which has a large impact on recipients, there is
now a big interest to compile and analyse existing data to develop predictive

models for urban stormwater loads and concentration.

14



Not all models include the sub-surface flow, and one reason is that in urban areas
large areas are impervious and thus do not have any, or very little, sub-surface flow
(or at least sub-surface flow that interacts with stormwater). However, to get a
correct estimation of runoff and its quality it is very important to have a correct
representation of the hydrological cycle (Zoppou 1999). Elliott and Trowsdale
(2007) suggest that to include baseflow components and runoff modules in a more

comprehensive way is an important way to further develop stormwater models.

There are a number of stormwater models, some include the baseflow in different

ways, and some do not. Here follows a few examples.

1.2.1. MIKE SHE

In the stormwater and groundwater model MIKE SHE, the required input
parameters to calculate the baseflow are the depth of water in the baseflow
reservoir, the depth of water required before baseflow occurs and the time

constant for baseflow (DHI Water and Environment 2007).

1.2.2. MUSIC

In the stormwater model MUSIC, the stormwater runoff contains surface runoff and
baseflow, and the required input data are rainfall, evapotranspiration and area per
land use. For generating baseflow, the following parameters can be used in the
model: rainfall threshold (mm), soil capacity (mm), initial storage (%), field capacity,
infiltration capacity coefficients, infiltration depth (mm), daily recharge rate (%),

daily baseflow rate and deep seepage (%) (McAuley and Knights 2009).

1.2.3. DR;M

Distributed Routing Rainfall-Runoff Model (DR3M) (USGS 2010) is often used to
simulate small urban basins. DR3M uses rainfall as an input to simulate stormwater
runoff periods that the user selects, showing how the stormwater moves through a
system of channels and pipes. Between the stormwater periods, daily soil-moisture
is shown. The required input data is daily precipitation, daily evapotranspiration,

and short-interval discharge. To define the basin, roughness and hydraulics

15



parameters and sub-catchment areas are required. DR3sM does not simulate the

baseflow.

1.2.4. HSPF

Hydrological Simulation Program — Fortran (HSPF) (USGS 2011) is commonly used to
calculate the effects of using point or diffuse source pollution treatment
alternatives, the effect of land use change and flow diversion among many other
things. The required input data for watershed simulation is precipitation and
potential evaporation. For water quality simulation, many different kinds of data
are needed, such as air temperature, tillage practices, point sources and pesticide

application. HSPF does simulate the baseflow.

1.2.5. SWMM

Storm Water Management Model (SWMM) (Rossman 2004) is used throughout the
world for many different uses, for example to design control strategies to minimise
the risk for combined sewer overflows or to design drainage system components
for flood control. The model simulates the quality and quantity of runoff within
each subcatchment and there is a lot of input data required for that, such as the
land uses, imperviousness, slope, depression storage in both pervious and
impervious areas and the percent of impervious area with no depression storage.

SWMM simulates the baseflow.

Elliot and Trowsdale (2007) have made a review of a number of different
stormwater models, and concluded that most of the models are limited in their
abilities to predict baseflow in different ways. For example, the models MUSIC,
SWMM and MOUSE do not include infiltration from infiltration ditches and
therefore do not contain all the factors that affect the baseflow. All the models in
the review are missing one factor or another that has an impact on the baseflow,
for example leakage from the water supply network, what effect the type of
vegetation has on the evapotranspiration, or the regional groundwater flows. This
means that if those models were to be used for prediction of the effects on

baseflow of e.g. urbanisation, the results could be unreliable.

16



1.3 StormTac

One model that does include baseflow in the calculation of flow and pollution load

is StormTac, a watershed based hydrological model with the purpose to quantify

water flows and pollutant loads, design of stormwater treatment facilities and the

quantification of acceptable loads and reduction needs for receiving waters e.g.

lakes, among other things.

StormTac has several modules, and this work will focus on the baseflow module,

which is part of the runoff module in Figure 1.

1. Runoff _+2'm
:

fow sport (500
| !

|+ (Stop

Figure 1. Simplified flowchart of the model StormTac (Larm 2005).

StormTac utilizes static equations to calculate water and mass balances, and to

estimate yearly acceptable pollution loads on receiving waters (Larm 2005). The

simplified (in respect to normally available input data) equation proposed for

calculating the base flow is:

17



N
Qh = lopr Z(Kinf,iAi)
- (01)

Where

Qy = base flow or ground water flow to the recipient [I/s]

p= corrected precipitation intensity data (rain+snow) [mm/year]
Kin¢ = fraction of the yearly precipitation that is infiltrated

K.= share of Ki,s that reaches the base flow

i =land use categories, i=1,2,.....N

A =land use area [ha]

Hence, the calculation of baseflow is based on precipitation, fraction of infiltrated
precipitation, share of infiltrated precipitation that reaches the base flow, and the
areas of different land uses. The precipitation (p) intensity data needs to be
corrected for systematic errors, and the land area per land use (A) has to be
mapped. The fraction of the yearly precipitation that is infiltrated (Kis) is calculated

through the following simplified equation:

K, =2=Po)=E
p (02)

Where

p = corrected precipitation intensity data (rain+snow) [mm/year]
¢ = runoff coefficient

E = potential evapotranspiration intensity [mm/year]

E is calculated as follows:

For all land uses except forests and recipients or lakes:

18



for ¢ <0.90 £ =1000(0.50—-0.55¢) (03)

For¢p>090 E=0

For forests:
Eforest = 445 (input data)
For recipients:

Erecipient = 590 (input data)

The equations above are stated as preliminary and will likely change in the light of

new data. For example, E cannot be a function of ¢ alone.

Figure 2 illustrates the parameters evaporation (E), precipitation (p), runoff

coefficient (@), fraction of the yearly precipitation that is infiltrated (Ki,s) and share

of Ki,s that reaches the base flow (Kx) in a ditch. Figure 3 illustrates evaporation (E),

precipitation (p), runoff coefficient (¢), fraction of the yearly precipitation that is

infiltrated (Kinf) and share of Ki,s that reaches the base flow (Kx) in a stormwater

sewer.
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Figure 2. Schematic of E, p, Ki,s, Ky and ¢ (see equations 01 and 02) for stormwater ditches.
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Figure 3. Schematic of E, p, Kiys, K, and ¢ (see equations 01 and 02) for stormwater sewers.

The Ky-value is a constant in the baseflow equation that shows how large a fraction
of Kin that reaches the baseflow. The default K,-value (0.7), that can be changed in
the model, is based on data from only a few case studies. Due to this lack of data,
the baseflow module in StormTac is contributes to overall model uncertainty. An
uncertainty analysis conducted by Stenvall in 2004 showed that the baseflow (Qp) is
sensitive to the K,-value, and further calibration against new case studies was
recommended. Consequently, the K,-value needs to be calibrated against more case
studies to establish if a revision is necessary, and to be able to make more reliable

baseflow calculations.

The land use-specific characteristic values for the baseflow in StormTac are also
based only on a few case studies, so more case studies are needed to get more

certain and more reliable values.

StormTac does not aim to be a comprehensive baseflow model, but nevertheless a
robust baseflow module is required for accurate calculations of flows and pollutant

concentrations in the overall stormwater model.

20



1.4 Aim

The aim of this work is to complement and revise the baseflow module in the

stormwater and recipient model StormTac.

1.5. Objectives

1. To generate calibration data for the K,-value through a literature study.

2. To revise the K,-value of the baseflow based on the data collected in the
literature study.

3. To revise the land use-specific characteristic values of pollutants in the

baseflow module.

2. Method

The principle is to use cases where the all the parameters (except the K,-value) of
equation 01 are known, which means that also the baseflow is known. For every
case, the parameters are put into the model, and then different Kx-values are
tested until the baseflow calculated by the model is the same as the actual
measured baseflow. The case studies will be found through a literature study and
by personal communication with Sweco’s Thomas Larm at (the developer of the
model), who has identified a number of case studies and provided original data

from these. Table 2 shows details about the case studies.
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Table 2. The case studies used in this study

Case Details Reference

number

1 Streams, Satraan and Skarholmsbéacken, Sweden (Larm et al. 2000)

2 Stockby, Lidingd, Sweden (Larm et al. 2002)

3 Lake, Kyrkviken, Lidingd , Sweden (Larm et al. 2002)

4 Dams, Backaslovsdammen/ Krubban/ | (Wikstrom et al. 2004)
Jarnbrottsdammen, Sweden

5 Lake, Sabysjon, Jarfalla, Sweden (Larm 2004)

6 23 agricultural watershed areas in Sweden (Stjernman 2009)

7 Dam, Kolardammen, Tyreso, Sweden (Rydberg and

Hammarstrom 2003)

8 Streams, Satraan and Skarholmsbacken, Sweden (Larm et al. 2000)

9 Dam, Tibbledammen, Upplands Bro, Sweden (Alm et al. 2010)

10 Southeast near the outlet of Lake Flaten, Sweden (Larm et al. 2001)

11 West of Lake Flaten, east of natural wetland area, | (Larm et al. 2001)
Sweden

12 Northwest of Lake Flaten, north of Herrangsparken, | (Larm et al. 2001)
Sweden

13 Tyreso C, Sweden (Jansson 2005)

14 Ursvik, Sweden (Persson and Yman 2010)

15 Trap Pond Outlet ,Nanticoke river watershed, | (Andres et al. 2007)
Delaware, USA

16 Mifflin Ditch, Nanticoke river watershed, Delaware, | (Andres et al. 2007)
USA

17 Nanticoke river, Nanticoke river watershed, | (Andres et al. 2007)
Delaware, USA

18 Herring Run Tributary, Nanticoke river watershed, | (Andres et al. 2007)
Delaware, USA

19 Dukes and Jobs ditch, Nanticoke river watershed, | (Andres et al. 2007)
Delaware, USA

The case studies used to calibrate the K,-value need to include (all or some of) the

following information:

e Area per land use
e The baseflow

e Concentration of substances

In some case studies, the baseflow is given because it has been measured, although

in many reports only the stormwater flow is measured. Then the baseflow must be

estimated manually through studying the stormwater flow, the baseflow and the

precipitation. When the flow data is available, it is plotted in a diagram where it is

clear where there is high and low flow. What is sought for is the yearly average of
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the baseflow, so not the lowest flow, but what seems to be the average lowest flow
(i.e. disregarding stormwater flow during precipitation events). From the diagram, a
baseflow is estimated. It is also important to know the precipitation so that it is
clear which of the peaks in the stormwater flow depend on rainfall, and which ones

that do not as these are part of the baseflow.

Usually, pollutant concentration is not directly measured in the baseflow but only in
the stormwater flow. In those cases a period without precipitation and
consequently low flow has to be found in the flow diagram, and concentration
measurements must have been taken during the same period in order to estimate

concentrations in the baseflow.

This process of estimating the average, minimum and maximum values of baseflow
(I/s) together with baseflow concentrations from laboratory reports was a major
part of the work, together with finding data from added case studies from the

literature studies (that should include land use areas).

2.1. K,-value

To get data for calibration of the Kx-value, the first step was to extract the area per

land use and to estimate the baseflow from every case study.

Table 3 shows the area per land use for all the case studies, and Table 4 shows the

baseflows from the case studies.
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As mentioned above, the formula to calculate the baseflow is:

N
0,=10pK, Z(K inf,iAi)
i= (01)

The Ki, and the precipitation (p) were assumed to be correct in the model, so the
area per land use was put into the model and then different K,-values were tested
until the correct (measured) baseflow was calculated by StormTac. See figure 4,

figure 5 and figure 6.
2.2. Pollutant concentrations

The goal was to calculate the concentration of each pollutant in the baseflow from

each type of land use, and it was done in a number of steps.

The median value of the concentration of a number of pollutants from the case
studies were calculated, see table 5. The median value was chosen instead of the
average value because the mean concentration would have been too affected by

the extreme values. Median values have been used throughout the study.

There were other substances present in a few of the case studies, and the data has
been put into the model, but it will not be presented in this report, due to the small
amount of data for each substance. The substances are Al, As, Ba, Ca, Co, Fe, K, Mg,
Mn, Na, S, Sb, W, CODCr, DOC, TOC, Cl, NH4, NO3, DEHP, monobutyltin, dibutyltin
and Si.

The concentration of pollutants from rural areas was estimated by comparing the
lowest value (min) and the second lowest value (min-1) from the current study, the
original rural concentration (default value in the model), the concentration for
stormwater in forests, and the minimum and median concentrations in
groundwater. No equation was used here as there are no data to make an equation
from. A coarse analysis was done, extreme values were taken away and a
reasonable value was estimated. See table 6. The minimum and maximum values of

concentrations are also shown.
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For each case study the proportion of urban land uses, and the proportion of rural
land uses were calculated. The rural land uses are forests, farmland, meadows,
wetlands, green area and grave yard, and urban land uses are all of the rest. From
the result a median value for the share of rural and the share of urban land use was

calculated.

The following model formula was developed (assumed) to calculate the

concentration of pollutants from urban land uses:

Curban = (Cmedian - CruraI*Sharerural)/Shareurban (04)

Table 7 shows the values used to calculate the urban concentration.

When the urban and rural characteristic values were established for each pollutant,
the urban concentration was assumed to be that for the land use “apartment” and
the rural concentration assumed to be that for the land use “forest”. As the
characteristic concentration for each pollutant from each land use is already
established for stormwater in StormTac (based on flow proportional data from land
uses), the same relationship as between different land use-specific concentrations
for stormwater was used for the baseflow. Hence, the calculated concentration for
rural land use was set as “forest” and then the same relationship as between the
forest concentration and the other rural land uses in stormwater was used for the
baseflow. The same principle was used for the urban land uses where the urban
concentration was set as the land use “apartments”, and the other urban land uses

got their concentrations according to the allocation in stormwater, see table 8.

To estimate the uncertainties associated with this method and data, the land use-
specific characteristic values were also calculated based on the minimum rural and
urban concentration, and the maximum rural and urban concentration, see table 9
and table 10 respectively. The minimum and maximum concentrations of different

pollutants were also calculated, see table 11.

26



The following equation was developed (assumed) to calculate the land use-specific

characteristic values for baseflow based on stormwater:

If Cx,b> Cmin, b and if Cx, p < Cmax, b then:

c -C
Cx,b — xS a,b C
(05)

else Cyp = Cmaxp if urban area
else Cyp = Cminy if rural area
Where

C = concentration

x =land use

b = baseflow

s = stormwater

a = apartment

It is an assumption to use the same allocation between land uses for baseflow as for
stormwater. This is due to the lack of land use-specific data for calibration, i.e. there
was no case study with one single land use, and so it would have been too complex
to calibrate the model based on many different land uses. If a review of this method
would result in an alternative better method, it can easily be changed in the model,

as the model is continuously updated with new data and updated methods.

The new land use-specific characteristic values were compared to the original ones

to calculate the difference and see how much they have changed, see table 12.

27



3. Results

StormTac now has 16 case studies with flow data for the base flow, and 9 Swedish
and 5 American case studies with pollutant concentrations in the baseflow. When
the current study started there were 6 case studies in StormTac’s database for
baseflow, number 1-6 in table 2.

3.1. K,-value

Figure 4 shows the K,-value during average baseflow. The median K,-value is 0.7.

K,-value during average baseflow
1.2

1 < <& 09
0.8

K,-value 0.6
0.4 < <@

0.2

0 T T T T T T T T T T T T T T T T T T 1

123 456 7 8 91011121314151617 1819

Case studies
emmwMedian ¢ Kx-value

Figure 4. K, -values during average flow
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Figure 5 shows the Kx-value during minimal baseflow. The median Kx-value is 0.3.

K,-value during minimum baseflow
0.9
0.8 L 4
0.7
0.6 ®
0.5 1%
K,-value 0.4
’ ¢ Kx-value
0.3 - c———————_
0.2 e=mw Median
0.1
0 '-Q—é—l—é—v—\
0 5 10 15 20
Case studies

Figure 5. K, -values during minimal baseflow.

Figure 6 shows the Kx-value during maximum baseflow. The median Kx-value is 1.

K,-value during maximum baseflow
1.2
1 1+ L A A 4
<
0.8 ®
K,-value 0.6
¢ Kx-value
0.4
== Median
0.2 ®
0 T T T 1
0 5 10 15 20
Case studies

Figure 6. K, -values during maximum baseflow.

Based on these results, the proposed best default K,-value is 0.7. However, the K,-
value varies with land use, type and condition of sewer, share of sewers versus

open ditches, area and other site-specific conditions. The median value for
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minimum flow (see figure 5) is 0.3, whilst the median value for maximum flow
(excluding values of K, = 1 for which the model did not reach the correct baseflow)
was 0.8 (see figure 6) — thus a range of default values from 0.3 to 0.8 might
reasonably be used. When there is extreme variation, from paved surfaces (no
infiltration) to lakes (everything infiltrates), Ky can vary between 0 and 1. The result
of Ky is a range where the median is 0.7, but it can often vary between 0.3 and 0.8,

and in extreme cases it can vary between 0 and 1.

This added information of K,-data was added to the model StormTac, as a result of
the work. Further, the used areas per land use and base flow data from each case

study was added to the data base of the model.

3.2. Pollutant concentrations

The compiled land use-specific base flow concentrations were replacing the old

data in the model StormTac as a result of this work.
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4. Discussion

The data for the K,-value (the share of infiltrated water that reaches the baseflow)
was added to StormTac, and StormTac’s database was complemented with data on
area per land use and estimated baseflows for every case study. The previous
baseflow concentrations, based on considerably fewer case studies were replaced

with the baseflow concentrations resulting from this study.

4.1 K,-value

Since the result shows that the median K,-value is 0.7 during average baseflow
conditions, this confirms that the original value 0.7 is a good default value for K.
This study also showed the variance that the K,-value could have; it has a normal
range from 0.3 to 0.8. This is very useful as the K,-value can be adapted to the case
where it is used. If it is known, for example, that a large proportion of the land uses
is impervious, then the K,-value can be set to lower than 0.7, and if there are mainly
pervious land uses, K, can be set to higher than 0.7. Further, the results show that
the extreme values 0 and 1 are possible as well, K, = 0 could be set if the land use is
a road-area that does not result in any baseflow at all, and 1 can be where there is a
lake and everything that infiltrates becomes part of the baseflow (or in that case

also groundwater inflow to the lake).

It might appear that the range for K, is very wide, but this likely reflects reality,
because of the highly variable contributions of baseflow to stormwater. There are
also large differences in pollutant concentrations between different land uses, again

reflecting time-dependent variations.

Usually data on the amount of leakage is not available, because it depends on the
age of the pipes, local circumstances and site-specific flows, so a default value must
be used for K,. However, if it would be known that e.g. the pipes are newly
constructed then a lower K,-value could be used, so it is possible to test to vary the

Ky-value between a minimum and maximum value. It would be very useful to
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conduct sensitivity and uncertainty analysis to see how much K, and other included

parameters (precipitation, evaporation, and runoff coefficients) affect the outcome.

By using equation 01 it is assumed that K+ is correct, and thereby that the
precipitation, the runoff coefficient and the evapotranspiration are correct as well.
But what has been used here is the default precipitation 636 mm/year for all case
studies due to lack of precipitation data. 636 mm/year is the estimated real yearly
precipitation for Stockholm. A very simple sensitivity analysis was conducted
through testing different values for precipitation, and this lead to relatively large
differences in the K,-value. Therefore it is proposed that a further study should
make an inventory of the precipitation data for these case studies in this work so
that data could be used, instead of the yearly average precipitation, to continue the
calibration or investigation of the K,-value. In addition, it is proposed to analyse the
impact of the other parameters through sensitivity analysis of the runoff coefficient

and evapotranspiration.

The recommendations for further studies, such as sensitivity analyses, will be used
by Thomas Larm, developer of StormTac, to further analyse the K,-values, and to

inform revisions of methodology etc.

4.2. Pollutant concentrations

The number of case studies that gives the basis for both Kx-values and for the land
use-specific characteristic values has increased from 6 to 19 as a result of this study.
There are 8 new Swedish cases, and 5 new cases from Delaware, USA. Therefore

the new default values are seen as more reliable than the previous ones.

The new and the old land use-specific characteristic values were compared and
assessed. For most of the substances the result shows reasonable values for the
land use-specific characteristic values. They are pretty similar to the previous ones
and values from groundwater and not higher than values from urban stormwater.
Although the values for nitrogen (N), phosphorus (P) and suspended solids (SS) from
the American study, Delaware, were extremely high, and therefore they were not

included in the calculation of the median value (and the following land use-specific
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characteristic values), as that would have resulted in unrealistic values. Further,
there was little data on mercury (Hg) and concentrations were higher than in
stormwater (which seemed unreasonable), so a special method was used to
calculate the median value where mercury concentrations from groundwater and
stormwater were included as well. That resulted in lower more reasonable

concentrations.

It is always a risk to reject data, it might show something interesting, but in this case
it is probably showing that this method might not apply outside of Scandinavia
(which is where it has been used). It can also be because the precipitation data is
something completely different in Delaware than the default value from Stockholm

that has been used in this work.

What has been touched upon several times is the importance of yearly average
values due to spatial and temporal heterogeneity of stormwater, and this is one of
the reasons why it is difficult to get data. For example, there might be different
concentrations even within a land use. One way to test StormTac would be to use it
on a new case study that has not been incorporated in the model, and to see how

close to the measured value the model output is.

The estimation that was done for the rural concentration (table 6) was done as
objectively as possible. From experience data for comparison was chosen and then
the most likely value was estimated. The assessment is different for different
substances, for some it is known that the concentrations are higher in stormwater
than in baseflow, for other that the baseflow concentration is closer to the
groundwater concentration. This is a problem for stormwater, for example there
are not measured data from all kinds of land uses and in those cases the only way to
get a value is to compare to other values and make an estimate. To get an idea
about the uncertainty of theses values, the minimum and maximum rural and urban
concentrations were also calculated (see table 6 and table 7), and used to calculate
the land use specific characteristic values with minimum and maximum

concentrations (see table 9 and table 10). The result gets a bit odd because of the
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way the formula is built up, but it illustrates that there are uncertainties associated

with this method and this data.

The land use-specific characteristic values will continuously be reviewed and revised
with new data and assessments as the model is being used, new comparisons with
measured data etc. This is already the case with the values for stormwater, and this

project is the start of that process for the baseflow concentrations.

If the model is used in a case where the actual concentrations are measured, then it
is possible to put those values into the model. The default values may be used when

there are no measurements.

StormTac is a fairly simple model, but it is common that all the data required by
other models is not available. StormTac only needs area per land use as input data,
as there are land use-specific characteristic values for baseflow pollutant
concentrations and the runoff coefficients, as previously mentioned yearly
precipitation data can either be added or default values can be used. The
concentrations, the coefficients and the precipitation can be changed, and the only
obligatory input data is area per land use. To continue this study, it is proposed a
comparison with other models regarding what input data they require, and what
equations they use to calculate the baseflow (I/s). Thereafter maybe the
methodology of StormTac will be revised, still taking into account the required input

data and what normally is available.

Finally, StormTac is mainly a stormwater model and recipient model, but baseflow
can play a rather important role for the total calculated mass and water fluxes. This
baseflow part was previously more uncertain based on fewer case studies. This
study resulted in more reliable data and gives recommendations for and discussion

of continued studies.
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